On ill-posedness for the one-dimensional periodic cubic Schrodinger equation
نویسندگان
چکیده
منابع مشابه
On ill-posedness for the one-dimensional periodic cubic Schrodinger equation
We prove the ill-posedness in H(T), s < 0, of the periodic cubic Schrödinger equation in the sense that the flow-map is not continuous from H(T) into itself for any fixed t 6= 0. This result is slightly stronger than the one in [7] where the discontinuity of the solution map is established. Moreover our proof is different and clarifies the ill-posedness phenomena. Our approach relies on a new r...
متن کاملSharp ill-posedness result for the periodic Benjamin-Ono equation
We prove the discontinuity for the weak L(T)-topology of the flowmap associated with the periodic Benjamin-Ono equation. This ensures that this equation is ill-posed in Hs(T) as soon as s < 0 and thus completes exactly the well-posedness result obtained in [12]. AMS Subject Classification : 35B20, 35Q53.
متن کاملSharp ill-posedness and well-posedness results for the KdV-Burgers equation: the periodic case
We prove that the KdV-Burgers is globally well-posed in H−1(T) with a solution-map that is analytic fromH−1(T) to C([0, T ];H−1(T)) whereas it is ill-posed in Hs(T), as soon as s < −1, in the sense that the flow-map u0 7→ u(t) cannot be continuous from H s(T) to even D′(T) at any fixed t > 0 small enough. In view of the result of Kappeler and Topalov for KdV it thus appears that even if the dis...
متن کاملOn the Numerical Solution of One Dimensional Schrodinger Equation with Boundary Conditions Involving Fractional Differential Operators
In this paper we study of collocation method with Radial Basis Function to solve one dimensional time dependent Schrodinger equation in an unbounded domain. To this end, we introduce artificial boundaries and reduce the original problem to an initial boundary value problem in a bounded domain with transparent boundary conditions that involves half order fractional derivative in t. Then in three...
متن کاملOn instability for the cubic nonlinear Schrodinger equation
We study the flow map associated to the cubic Schrödinger equation in space dimension at least three. We consider initial data of arbitrary size in Hs, where 0 < s < sc, sc the critical index, and perturbations in Hσ , where σ < sc is independent of s. We show an instability mechanism in some Sobolev spaces of order smaller than s. The analysis relies on two features of super-critical geometric...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Research Letters
سال: 2009
ISSN: 1073-2780,1945-001X
DOI: 10.4310/mrl.2009.v16.n1.a11